Peter Allen, a professor at Columbia University and director of its Robotics Group, and colleague Matei Ciocarlie developed a simpler way to control a dexterous robotic hand by drawing on research in biology. They realized that while human hands have about 20 degrees of freedom (20 joints that can each bend), each joint is not capable of moving completely independently; instead, its movements are linked to those of other joints by muscles or nerves.
Traditionally, the software used to control a complex robot hand has tried to account for all the degrees of freedom in the robotic hand's joints, but this is computationally cumbersome and slows the robot down. Instead, Allen and Ciocarlie decided to limit the movement of a robot hand in the same way a human hand is limited. By linking its joints in this way, they showed it is possible to control a complicated robotic hand with faster, more efficient algorithms and without losing any of its functionality. "You can learn from biology to reduce the degrees of freedom," says Allen. "Even though you may have 20 degrees of freedom, you don't need to use them."
The researchers experimented with four different kinds of complex robotic hand, each of which had multiple joints. They developed software to control each gripper by linking its joints. In simulations and real-life tests, the software was able to quickly calculate grasping positions in order to grab different objects, including a wine glass, flask, telephone, model airplane, and ashtray.
0 comments:
Post a Comment