Wednesday, December 9, 2009

0

Transformer Robot Cell Phone

At Pakoz Hardware there’s a concept cell phone which design is come from the robot movie ‘Transformer’. The cell phone can be transform to complete mini robot with two minigun and a litle bi-pedal bot.


The cell phone Transformer concept really cool and make me not patient to have and get one of them. I like the Transformer movie since when I still 7 years old I watch the cartoon and really love it. Now in cinema I can see the movie with the spectacular effect. Hopefully the movie have the second series.

Wednesday, August 12, 2009

0

Pino Robot the best robot in the world :



Pino the robot loves to play games and the more you interact with Pino, the more he learns.

Say hello to your smart robotic friend. He's so cool, you'll never want to put him down! The more you interact with Pino, the more he does.

Pino lost his memory after his space ship crashed to earth. Now he's alone and needs your care and attention. Look after Pino and be rewarded with fun and friendship as his personality grows.

Pino the robot loves to play games and the more you interact with Pino, the more he learns. Pino will learn to walk and sing and responds to sound and your voice. Pino has realistic emotions: he can be happy, sad, angry or sleepy.

Leave your bedroom and Pino will guard your room from any unwanted intruders! Put two Pinos together and watch them talk and interact with each other.

Our verdict: The best Toy robot in the world!



0

Voyage of the Bacteria Bot :


Self-propelled microbots navigate through blood vessels.
The 1966 science-fiction movie Fantastic Voyage famously imagined using a tiny ship to combat disease inside the body. With the advent of nanotechnology, researchers are inching closer to creating something almost as fantastic. A microscopic device that could swim through the bloodstream and directly target the site of disease, such as a tumor, could offer radical new treatments. To get to a tumor, however, such a device would have to be small and agile enough to navigate through a labyrinth of tiny blood vessels, some far thinner than a human hair.

Researchers at the École Polytechnique de Montréal, in Canada, led by professor of computer engineeringSylvain Martel, have coupled live, swimming bacteria to microscopic beads to develop a self-propelling device, dubbed a nanobot. While other scientists have previously attached bacteria to microscopic particles to take advantage of their natural propelling motion, Martel's team is the first to show that such hybrids can be steered through the body using magnetic resonance imaging (MRI).

To do this, Martel used bacteria that naturally contain magnetic particles. In nature, these particles help the bacteria navigate toward deeper water, away from oxygen. "Those nanoparticles form a chain a bit like a magnetic compass needle," says Martel. But by changing the surrounding magnetic field using an extended set-up coupled to an MRI machine, Martel and his colleagues were able to make the bacteria propel themselves in any direction they wanted.

The bacteria swim using tiny corkscrewlike tails, or flagella, and these particular bacteria are faster and stronger than most, says Martel. What's more, they are just two microns in diameter--small enough to fit through the smallest blood vessels in the human body. The team treated the polymer beads roughly 150 nanometers in size with antibodies so that the bacteria would attach to them. Ultimately, the researchers plan to modify the beads so that they also carry cancer-killing drugs.

0

A Robot that Navigates Like a Person :


A new robot navigates using humanlike visual processing and object detection.
European researchers have developed a robot capable of moving autonomously using humanlike visual processing. The robot is helping the researchers explore how the brain responds to its environment while the body is in motion. What they discover could lead to machines that are better able to navigate through cluttered environments.

The robot consists of a wheeled platform with a robotic "head" that uses two cameras to capture stereoscopic vision. The robot can turn its head and shift its gaze up and down or sideways to gauge its surroundings, and can quickly measure its own speed relative to its environment.

The machine is controlled by algorithms designed to mimic different parts of the human visual system. Rather than capturing and mapping its surroundings over and over in order to plan its route--the way most robots do--the European machine uses a simulated neural network to update its position relative to the environment, continually adjusting to each new input. This mimics human visual processing and movement planning.

Mark Greenlee, the chair for experimental psychology at Germany's University of Regensburg and the coordinator of the project, says that computer models of the human brain need to be validated by experiment. The robot mimics several different functions of the human brain--object recognition, motion estimation, and decision making--to navigate around a room, heading for specific targets while avoiding obstacles and walls.

Ten different European research groups, each with expertise in fields including neuroscience, computer science, and robotics, designed and built the robot through a project calledDecisions in Motion. The group's challenge was to pull together traditionally disparate fields of neuroscience and integrate them into a "coherent model architecture," says Heiko Neumann, a professor at the Vision and Perception Lab at the University of Ulm, in Germany, who helped develop the algorithms that control the robot's motion.



0

Robo Crawler Monitors Underground Power Cables :


Researchers have developed a robot that senses damage in cables before they fail.
Often before a power cable goes, it gives off a few subtle signs of distress. Unfortunately, many critical distribution cables are underground, which makes them difficult for people to access and monitor. But now a new cable-crawling robot, developed by researchers at the University of Washington (UW), Seattle, could provide much-needed insight into the health of subterranean power systems.

"Monitoring cable systems is one of the holy grails of the electricity industry," says Don Von Dollen, program manager for the IntelliGrid Program at the Electric Power Research Institute (EPRI), in Palo Alto, CA. "When you get a cable failure, it's a real pain to find it, dig it up, and fix it. Coming up with good diagnostics has been a longtime challenge, and it's a tough nut to crack."

For decades, researchers and utilities have been working on various ways to monitor power grids. A traditional method, which has been used for 50 years, is called a high-potential test, says Von Dollen. "You basically disconnect the cable and send a big voltage spike across it," he says. "If there are any problems, this is going to cause the cable to fail." It's a brute-force method, he says, but if the cable fails, at least it's in a controlled setting. More recently, people have used radar to detect malfunctions.

But these methods require a fair amount of human interaction. The UW researchers approached the challenge by designing a robot that can autonomously traverse underground cables buried in pipes and tunnels. The robot, which rolls along on small neoprene wheels and is powered by a battery pack, hugs the cable tightly as its three onboard sensors scan for signs of wear and tear. Only about 10 percent of underground cables are found in pipes or tunnels (the rest are buried directly in the ground). But these cables are often the ones that "experience unexpected conditions" such as water drips, says Alexander Mamishev, professor of electrical engineering at UW and project leader, which makes them more susceptible to failure.

Monitoring these underground power systems is a two-part problem, Mamishev says. First, the terrain is difficult for a robot to navigate autonomously. Miles of cables consist of twists, turns, brackets, and overhangs that can impede progress. These considerations were integral to the design, he says. The robot has a gyroscope to help maintain its balance and stabilizing arms to help right it if it slides off track. The robot is built in segments, somewhat like a train with multiple cars, and it sits three inches above a cable. One segment is devoted to the robot control, and the other one houses the sensors and data-processing units.

0

A Tiny Robotic Hand :

An ultrasmall grabbing gadget might someday become a new tool in microsurgery.
Early this winter in a University of California, Los Angeles (UCLA), laboratory, a mechanical hand less than one millimeter wide deftly plucked a single fish egg from a gooey underwater clutch, demonstrating a new technology that could one day make it into surgeons' tool kits.

"It is the world's smallest robotic hand, and [it] could be used to perform microsurgery," says Chang-Jin Kim, the lead researcher at UCLA, who says the device is safe for biological applications. Since it runs on gas pressure instead of electricity, it can be used in both dry and wet environments.

The "microhand" measures one millimeter across when closed into a fist. It consists of four "fingers," each of which is made from six silicon wafers, with polymer balloons doing the work of "muscles" at the wafers' joints.

Each balloon is connected with narrow channels through which air is pumped in or out. When a balloon is inflated, the distance between two joints decreases, and the finger flexes inward. Upon deflation, the fingers relax. And with selective inflation and deflation, researchers are able to manipulate the fingers into clasping or releasing an object.

"I must say that the microhand is a wonderful [micro-mechanical] achievement," says Albert Pisano, a mechanical engineer at the University of California, Berkeley, and a leader in such research. "The field of microsurgery and minimally invasive surgery is currently dominated by grippers and tools that are mounted at the end of long, rigid aluminum rods. Certainly these are adequate for many purposes, but now that functional microhands have been developed, one can visualize a new set of minimally invasive surgical tools that allow the surgeon additional dexterity in complicated procedures."

0

Robo Bird-Watcher :

An intelligent video system in an Arkansas bayou searches for an elusive bird.
Researchers from the University of California, Berkeley and from Texas A&M University have developed a new kind of bird-watching system that automatically identifies birds in flight and records their movements in high-resolution video. Preliminary results and video clips from the ongoing project were presented on Saturday at the annual meeting of the American Association for the Advancement of Science, in San Francisco.

Ultimately, the researchers hope the cameras catch a glimpse of the ivory-billed woodpecker. The search for the woodpecker, long thought to be extinct, was revitalized in 2004 when a bird resembling the species was caught on video in the Cache River National Wildlife Refuge of eastern Arkansas. The video was too blurry, however, to allow a definitive identification. Field biologists sat in canoes for hours, waiting for an ivory-billed woodpecker to fly by so they'd have more-conclusive evidence.

"It's incredibly difficult and tedious," says Ken Goldberg, one of the lead researchers on the project and a professor of engineering at the University of California, Berkeley. "Even if they see something, getting the camera focused [quickly] is very tricky." Some birders were using motion sensors to trigger video cameras, but Goldberg says the equipment wasn't sensitive enough to detect the relatively small creatures.

Intrigued by the problem, Goldberg and colleagueDezhen Song, an assistant professor of computer science at Texas A&M University, designed a special system to aid in the search. Known as the Automated Collaborative Observatory for Natural Environments(ACONE), the two-camera system scans a patch of sky (measuring roughly 300 feet by 900 feet) above the Cache River refuge. Goldberg says it's an ideal location because it's a high-traffic area for birds and clear of treetops, so the cameras get a relatively unobstructed view. The cameras are mounted on a power-line pole, along with a computer, in the middle of a bayou.

As the cameras scan the sky, each one captures images at 11 frames per second. Those frames are temporarily stored in a buffer. Software on the computer analyzes each frame immediately, looking for things that roughly match the speed and size of an ivory-billed woodpecker. When a bird is detected, Goldberg explains, the system permanently records and stores the previous seven frames and the next seven frames of video on the hard drive. Each frame has a resolution of 1,600 by 1,200 pixels. To save storage space, frames that the software deems irrelevant are automatically deleted.

The software also saves time. The fewer images collected, the fewer canoe trips are required to replace the hard drive in the middle of the bayou. More important, the automatic identification system means that human eyes are spared from watching endless hours of empty sky.

0

Amoebalike Robots for Search and Rescue :

A novel form of locomotion inspired by the way amoebas move could help robots get in places other robots can't reach.
Roboticists at Virginia Tech, in Blacksburg, VA, have developed a novel form of locomotion for robotics based on the way the single-celled amoeba moves. Unlike any other robots, the Virginia Tech ones are designed to use their entire outer skin as a means of propulsion.

Toroidal in shape--a bit like an elongated cylindrical doughnut--robots of this new breed differ from wheeled, tracked, or legged bots in that they move by continuously turning themselves inside out, says Dennis Hong, an assistant professor of mechanical engineering at Virginia Tech. "The entire outer skin moves," he says.

This novel type of locomotion is particularly suited to search-and-rescue applications, says Hong: "They can squeeze under a collapsed ceiling or between obstacles very easily." Indeed, preliminary experiments show that the robots, with their soft, contracting bodies, are able to push themselves through holes with diameters much smaller than their normal width, Hong says. And because the robots are able to use their entire contact surfaces for traction, they can move over and through very uneven environments with ease.

The actual motion is generated by contracting and expanding actuator rings along the length of the robot's body. By contracting the rings at the rear of the robot and expanding them toward the front, they are able to generate movement.

This is very much akin to the principle of the pseudopod used by single-celled organisms such as amoebas, says Hong. This principle consists of a process of cytoplasmic streaming, in which the liquid endoplasm within the cell flows forward inside a semi-solid ectoplasmic tubular shell. As the liquid reaches the front, it turns into the gel-like ectoplasm, forming an extension to this tube and moving the organism forward. At the same time, the ectoplasm at the rear of the tube turns into the liquid endoplasm, taking up the rear.

To produce a similar sort of motion, Hong's initial experiments have used robots consisting of flexible toroidal membranes lined with propulsion rings of either electroactive polymer or pressurized hoses. But now, with funding from a new National Science Foundation grant, Hong has forsaken the use of elastic membranes in favor of more-rugged designs. He declines to discuss these designs in detail because of intellectual property issues. However, he says that this latest work involves rigid mechanical parts that are linked in such a way as to enable this sort of motion. "It's like a 3-D tank tread," he says.

"It's an interesting idea," says Henrik Christensen, professor of robotics and director of Robotics and Intelligent Machines at Georgia Institute of Technology, in Atlanta. "We really need better locomotion mechanisms for robots." Wheels and tracks work fine until the terrain becomes very uneven, while legs are slow and terribly inefficient, he says.

This is not the first time that toroids have been proposed as part of a propulsion system, says Andrew Adamatzky, a professor of unconventional computing at the University of the West of England, in Bristol, U.K. But using electroactive polymers to produce propagating waves of contractions makes this latest research very interesting, he says. "These experimental designs open new and exciting perspectives in soft-bodied robotics."

However, with soft bodies come new challenges. For example, it is not clear how one would integrate a power supply, computerised controllers, and sensors. "The principles here are good, but the engineering really needs to be worked out," says Christensen.

0

Respectful Cameras :

A new type of video surveillance protects the privacy of individuals.
A camera developed by computer scientists at the University of California, Berkeley, would obscure, with an oval, the faces of people who appear on surveillance videos. These so-called respectful cameras, which are still in the research phase, could be used for day-to-day surveillance applications and would allow for the privacy oval to be removed from a given set of footage in the event of an investigation.
"Cameras are here to stay, and there's no avoiding it," says UC Berkeley computer scientist Ken Goldberg. "Let's figure out new technology to make them less invasive." According to a 2006 report prepared by the New York Civil Liberties Union, the number of publicly and privately owned video cameras in Lower Manhattan increased by a factor of five between 1998 and 2005, and several thousand cameras are in place in Greenwich Village and Soho alone. The United Kingdom, however, holds the record for video surveillance. In a report filed on Tuesday, the information commissioner there estimates that there are four million video-surveillance cameras in the United Kingdom--that's one for every 14 people. Goldberg thinks of the respectful cameras as a compromise between advocates for privacy and those concerned about security.

0

Robotic Fleas Spring into Action :


Tiny rubber bands can power microrobots that could serve as ultrasmall sensors.

An autonomous robotic flea has been developed that is capable of jumping nearly 30 times its height, thanks to what is arguably the world's smallest rubber band.

Swarms of such robots could eventually be used to create networks of distributed sensors for detecting chemicals or for military-surveillance purposes, saysSarah Bergbreiter, an electrical engineer at University of California, Berkeley, who developed the robots.

The idea is that stretching a silicone rubber band just nine microns thick can enable these microrobotic devices to move by catapulting themselves into the air. Early tests show that the solar-powered bots can store enough energy to make a 7-millimeter robot jump 200 millimeters high.

This flealike ballistic jumping would enable these sensors to be mobile, covering relatively large distances and overcoming obstacles that would normally be a major problem for micrometer-sized bots, says Bergbreiter.

Such sensors could be scattered from a plane but may not land in the most ideal positions, so making them mobile could allow them to be repositioned, if somewhat haphazardly. "Distributed sensors in general give you the large picture," Bergbreiter says. This is because they can provide a more detailed resolution over a larger area compared with more-traditional nondistributed approaches to sensing.

"With miniature robots, hopping is a good option if you're trying to move over uneven terrains," says Metin Sitti, an assistant professor at the nanorobotics lab at the Robotics Institute at Carnegie Mellon University, in Pittsburgh. "At that size, the critical issue is power, so it is a good choice to store energy," he says.

The impressive jumping skills of insects such as fleas come from their ability to store energy in an elastomeric protein called resilin. This allows them to store a large amount of energy and then release it very suddenly as movement. But while insects store the energy through compressing an elastomer, Bergbreiter opted for a system that stretches one.



0

Molten Mirrors :

Liquid mirrors could enable more-powerful space telescopes.
Canadian researchers have developed a liquid mirror that could operate in a future telescope located on the moon, allowing researchers to peer back into the origins of the universe with extraordinary clarity. Telescopes relying on liquid mirrors can be hundreds of times more powerful than those with glass mirrors--for the same cost--and they should be easier to assemble in space.

liquid-mirror telescope could reveal much fainter objects than the Hubble Telescope can, says Ermanno F. Borra, a physics professor at the Université Laval, in Quebec, who is leading the development of the new mirror. The power of a telescope is proportional to the surface area of its mirror. The James Webb telescope, which is scheduled to launch in 2013 and is far more powerful than the Hubble, has a diameter of about six meters. (See "Giant Mirror for a New Space Telescope.") A lunar liquid-mirror telescope could be as large as 20 to 100 meters, says Borra.

The liquid mirror, which was funded by NASA, consists of a pool of an ionic liquid coated with a film of silver. Such ionic liquids are carbon-containing salts that freeze only at very low temperatures and have very high viscosity. The salt used in the Laval mirror is liquid down to -150 ºC and does not evaporate below room temperature, even in a vacuum--suggesting that it could withstand the harsh environment of the moon.

There are two limitations on cosmologists' observations of the early universe: "The objects you want to observe are incredibly distant and incredibly faint," says Borra. Telescopes in orbit like the Hubble, whose views are unobstructed by Earth's atmosphere, are limited in size and power; telescopes on Earth can be larger and more powerful but produce fuzzier images because of the atmosphere. Liquid mirrors couldn't go into orbit, but they could operate on the moon, which has no atmosphere.

0

Upgrading the Prosthetic Hand :

A lightweight prosthetic hand uses hydraulics to achieve more natural finger movement.
A lightweight hydraulic hand with individually powered fingers could change the lives of amputees, say researchers in Germany. The Fluidhand, according to its developers, is lighter, behaves more naturally, and has greater flexibility than artificial hands that use motorized fingers.

The Fluidhand prototype, developed by a team led byStefan Schulz at the Research Center in Karlsrühe, in partnership with the Orthopedic University Hospital, in Heidelberg, Germany, has flexible drives located in each of its finger joints, enabling the wearer to move each finger independently. Lightweight miniature hydraulics are connected to elastic chambers that can flex the joints of the fingers. As sensors on the fingers and palm close around objects, nerves in the amputation stump pick up muscular sensations so that the amputee can use a weaker or stronger grip. The prosthetic provides five different strengths of grip.

"It is so intuitive that learning to use the device only takes about 15 minutes," says Schulz.

Last September, 18-year-old Sören Wolf, who was born with only one hand, became the first person to use the Fluidhand. According to German press reports, Wolf was able to type on a keyboard with both of his hands for the first time in his life, and he told reporters that, when he's wearing the Fluidhand, he doesn't feel handicapped anymore.

International interest in the Fluidhand peaked late last month, when it was announced that the Orthopedic University Hospital is testing the device in comparison with the i-LIMB Hand. Wolf is the first amputee to use both prosthetics.

Produced by the Scottish company Touch Bionics, i-LIMB was the first prosthetic hand that enabled the movement of individual fingers. The prosthetic, released last summer, uses a different technical principle than the Fluidhand. With i-LIMB, movement is enabled by five small, battery-powered motors that are embedded in each finger. Schulz believes that the hydraulic system has some advantages over the motorized fingers. "In contrast to the movement with electric motors and transmissions, the Fluidhand remains soft and flexible," he says. "Articles can therefore be seized more reliably, and the hand feels more natural."


0

Building a Better Wall Climber :


A new kind of robot can cling to walls and relax its grip.
Researchers have designed a robot that uses a novel form of electrically activated adhesion to enable it to scale any kind of vertical surface. The robot can even climb surfaces that are dusty or wet, be they concrete, glass, or drywall.

"What's really unique about this is the technology, not the robot," says Harsha Prahlad, senior mechanical engineer at SRI International, a nonprofit research organization based in Menlo Park, CA. There are other robots that can climb walls. But these have usually involved using microscopic fibers designed to mimic the function of the hairlike setae that give geckos their remarkable sticking power, Prahlad says.

In contrast, SRI's robot works by inducing electrostatic charges in the surface of a wall. The advantage here is that the adhesive climbing surfaces of the robot can be turned off, making movement much simpler, says Prahlad. It also makes the robot's adhesive surfaces self-cleaning, he says, thereby avoiding any gradual buildup of dust and dirt that would ultimately reduce the adhesion.

Tests have shown that the robot is capable of generating 1.5 newtons of sticking force per centimeter square of contact with a wall. Presenting his results at this year's International Conference on Robotics and Automation, in Pasadena, CA, Prahlad showed that the robot was able to scale walls while carrying weights of up to 75 pounds.

"It's an interesting and robust approach," says Metin Sitti, a mechanical engineer at Carnegie Mellon University, in Pittsburgh, who has been working on wall-climbing robots for some time. However, he says, the forces generated are just one-tenth as strong as is currently being seen when the gecko-inspired approach is used.

On the plus side, however, the simplicity of Prahlad's approach should make it easier to apply to human wall-climbing applications, says Nicola Pugno, a professor of structural mechanics at Turin Polytechnique, in Italy, who has been working on a sort of Spiderman suit using nanotube-covered adhesive surfaces.

0

MAC 301 WASH LED MOVING HEAD


The MAC 301 Wash™ is an LED moving head washlight with a powerfully fast zoom and impressive zoom range.
It is capable of producing a wide range of exceptional colors from rich saturated shades to uniform pastels through the entire zoom range. LED-based MAC with zoom The MAC 301 Wash’s efficient and fast zoom provides beam angle control from 13 - 36° for more accurate and flexible design possibilities. The fixture’s outstanding RGB color mixing is maintained through the entire zoom range.

Optics

The MAC 301 Wash’s 108 high-power LEDs produce a bright and well-defined beam – the brightest LED moving head in its class. The LEDs are arrayed in a high density design to enable a more even blending of colors. The innovative and highly efficient lens system makes for a punchy beam with great beam definition.

Outstanding colour

A principal feature of the MAC 301 Wash is its excellent RGB colour mixing system. The full spectrum system combines with the unique optical system to produce a wide range of vibrant saturated colours and subtle pastels. A range of mixed shades from cool to warm is also possible. For increased colour possibilities, the MAC 301 includes an electronic 7 colour + white colour wheel rotation effect with snap, blackout or dimmer fade at each colour change.

Dynamic effects

The MAC 301 Wash is capable of smooth dimming from 0-100% with excellent color stability throughout the dimming range. Strobe effects such as pulse and random effects are also possible.

Movement

High-speed 450° pan and 332° tilt movement with fast acceleration and smooth movement is provided by powerful three-phase stepper motors, all while staying surprisingly quiet which makes the MAC 301 Wash suitable for noise-sensitive applications. An automatic positioning correction system returns the fixture to its original position should it be accidentally knocked out of position.

Control

The MAC 301 Wash is industry standard DMX-512 controllable with stand-alone and synchronized master/slave options. It is equipped with both 3-pin and 5-pin XLR connections. An illuminated graphics display provides for easy programming and easy-to-read fixture menus and messages. An auto-sensing power supply covers worldwide voltages and frequencies allowing the fixture to operate anywhere in the world.

Design

Made of durable discast aluminum, the MAC 301 Wash’s compact, lightweight design makes it ideal for rental applications, television use, night-time venues and more. The fixture’s head and yolk are easy to access for easy cleaning and maintenance.

All the benefits of LED

The MAC 301 Wash offers all the benefits of LED technology like greater reliability, less maintenance and increased energy efficiency for a lower cost of ownership.

0

LED OUTDOOR MULTIPAR BLACK LEDPAR550 :


Suited for both permanent and temporary outdoor installations, the Pro Shop LED Outdoor MultiPAR provides a vibrant and saturated output for a variety of applications such as architectural and natural features.
The high intensity LED’s provide deep saturation and colour vibrancy to any subject. Ideal for temporary installations in and around garden beds, pathways, marquees and fountains the Outdoor LED MultiPAR will liven up any space whilst still ensuring the security of the fitting should that unexpected rain shower blow over. An LED Menu system on the back of the unit allows simple setup of the address and stand alone functions so that setups are quick and easy. Those simple corporate colour looks are easily achievable by a static colour selection on the back that allows you to set a colour which will remain even if the unit is powered off and back on again. All in all the Outdoor LED MultiPAR is compact and bright, while still providing the weather resistance required for permanent installations on architectural facades and garden features.

0

Robot Mimics a Canine Helper :

A robot inspired by helper dogs could assist the disabled and the elderly.
Service dogs that open doors, switch on lights, and perform other useful tasks offer a much needed lifeline to people with disabilities. Now researchers at the Georgia Institute of Technology are developing robots that mimic the relationship between humans and their canine helpers.

Robotics researchers have long sought to create robots that can help out around the home. But while robots are good at carrying out preprogrammed tasks and following a clear trajectory, navigating a complex home environment and interacting with real people remains a formidable challenge.

Charles Kemp, a professor at Georgia Tech, believes that animal helpers may offer the ideal model for robotic assistants. He began by studying the way that helper monkeys--capuchins trained to perform useful tasks for disabled people--fetch an object or operate a device when it is highlighted with a laser pointer. "That got us excited about what we can learn from state-of-the-art biological systems," says Kemp. It also inspired him and his colleagues to develop El-E, a robot that they trained to respond to commands given via a laser pen earlier this year.

0

Teaching Robots New Tricks :


Robotic helicopters learn complex tricks by analyzing demos.

Programming instructions for robots can be a time-consuming, labor-intensive task. Many roboticists believe that training robots by demonstrating new skills could speed up the process and enable the machines to perform more difficult tasks. Now researchers have created such a system for robotic helicopters. With their approach, the team can train a robotic helicopter to perform a complicated aerial maneuver in less than 30 minutes simply by analyzing video footage of the trick. The work could one day be applied to a wide variety of robots on land and sea, as well as in the air.

For very basic aerial maneuvers, researchers can program specific commands based on the way a human operator would use the controls. But aerial acrobatics, such as flying upside down, require a more robust and adaptive approach. A gust of wind or a small variation in the helicopter's starting position can send the vehicle completely off course if adjustments aren't made immediately to the flight plan. "It's not sufficient to just replay the same sequence of controls as a human pilot," says Pieter Abbeel, who worked as a researcher on the project while completing his PhD at Stanford University. With the apprenticeship approach, the robot can make changes mid-flight because it's not tied to a specific series of commands. This could help autonomous helicopters deal with real-world challenges, such as landing on slanted terrain or coping with sudden changes in weather conditions, ultimately resulting in more stable flight.

Training begins with a human expert demonstrating a new trick on a remote-controlled helicopter. As the expert repeats the maneuver, one of the researchers presses a button to indicate the start and end time of each attempt. The expert needs to perform each trick approximately 10 times, so that subtle deviations can be eliminated and the software can calculate the ideal path. The software carefully warps the timing of each video clip so that it can compare the attempts. Small blips in the data, known as noise, are also eliminated. Ultimately, the software creates a highly accurate aerodynamic model of the trick that the autonomous helicopter uses as a flight guide.

0

Robotic Weather Planes :


Fleets of robotic aircraft could improve weather forecasts.
Weather forecasters may not have the best reputation for accuracy, but with today's computational modeling, it's possible to make pretty reliable weather predictions up to 48 hours in advance. Researchers at MIT, however, believe that autonomous aircraft running smart storm-chasing algorithms could get that figure up to four days. Better weather forecasting could help farmers and transportation authorities with planning and even save lives by providing earlier warnings about storms and severe weather, says Jonathan How, principal investigator at MIT's Department of Aeronautics and Astronautics.

Long-term predictions don't necessarily go wrong because of forecasting models, but rather because initial conditions were inaccurately measured, saysMartin Ralph, a research meteorologist at the National Oceanic and Atmospheric Administration's earth systems laboratory, in Boulder, CO. Such inaccuracies come from gaps in the data, he says.

Ground-based sensors are already used to record temperature, wind speed, humidity, air density, and rainfall, but they gauge conditions only at ground level, says How. At sea, where many severe weather fronts originate, the coverage is much sparser. Satellite observations help build up a picture, but satellites are blind to a number of useful types of data, such as low-altitude wind speed and atmospheric boundary conditions, says Ralph.

To get the most accurate readings, you really want to get your sensors into the weather itself, says How. In theory, weather balloons can do this, but only if they happen to be in the right place at the right time. So weather services currently attempt to track down weather systems using piloted planes that fly prescribed routes, taking measurements along the way. The logistics of deploying such planes is so complicated, however, that it's difficult to change their routes in response to changing weather conditions.

0

Making Robots Give the Right Glances :


By mimicking nonverbal actions, robots could become better assistants.
If robots are to become a common sight in homes and public spaces, they will need to respond more intuitively to human actions and behave in ways that are easier for humans to understand. This week, at the 2009 IEEE Human-Robot Interaction (HRI) conference, in La Jolla, CA, researchers will present recent progress toward these twin goals.

Several research teams are exploring ways for robots to both recognize and mimic the subtle, nonverbal side of human communication: eye movements, physical contact, and gestures. Mastering these social subtleties could help machines convey meanings to supplement speech and better respond to human needs and commands. This could be crucial if robots are ever to fulfill their potential as personal assistants, teaching aides, and health-care helpers, say those involved.

Scientists from Carnegie Mellon University will present details of experiments involving a robot that uses eye movement to help guide the flow of a conversation with more than one person. Developed in collaboration with researchers from Japan's Osaka University and from ATR Intelligent Robotics and Communication Laboratory, this trick could prove particularly useful for robots that act as receptionists in buildings or malls, or as guides for museums or parks, the scientists say.

0

A Robomedic for the Battlefield :


A snakelike robotic arm may one day medically attend to soldiers as they are carried off the battlefield.

The first 30 minutes after a battlefield injury are dire: that's when nearly 86 percent of battlefield deaths occur. Before attending to the wounded, frontline physicians have to quickly locate the casualty and extract him from the battlefield, often under heavy fire. This can take up costly minutes, as well as expose medics themselves as possible targets.

Now researchers at Carnegie Mellon University (CMU) are developing technology to give battlefield medics a helping hand--literally. Howie Choset, an associate professor of robotics at CMU, has engineered a snakelike robotic arm equipped with various sensors that can monitor a soldier's condition. The robot can be wirelessly controlled via a joystick, so that a doctor at a remote clinic may move the robot to any point on a soldier's body to assess his injuries as he's being carried to a safe location. The robot's serpentine flexibility allows it to maneuver within tight confines, so that, in case a casualty can't be extracted from the battlefield immediately, the robot can perform an initial medical assessment in the field.

Choset and his colleagues have been building "snakebots" for over 10 years, improving range of motion and flexibility, as well as minimizing the overall size in multiple prototypes. In the past, the group has designed robots for urban search-and-rescue missions, and has worked with Ford Motor Company to build snake robots for precise auto-body painting. The team recently formed a startup company to commercialize one of its latest technologies, a robot that can potentially perform heart surgery.

0

Open-Source Data Glove :


AcceleGlove can be programmed for many applications.
Gloves that are wired with sensors can provide useful information about a user's motions, and they offer a novel way to interact with computers beyond the keyboard and mouse. At the end of May, AnthroTronix, a company based in Silver Spring, MD, released its first commercial version of the AcceleGlove, a programmable glove that records hand and finger movements. Other gloves--like 5DT's Data Glove, used primarily in virtual reality--normally cost $1,000 to $5,000, but the AcceleGlove costs just $499. It comes with software that lets developers use Java to program it for any application they wish. AnthroTronix initially developed the glove with the U.S. Department of Defense for robotic control. The glove could also be used in video games, sports training, or physical rehabilitation.


0

Helping Robots Get a Grip :


One of the main things preventing robots from lending a hand with everyday tasks is a simple lack of manual dexterity. New research from a team at Columbia University NY could help robots--and robotic prosthetics--get a better grip on all kinds of objects.

Peter Allen, a professor at Columbia University and director of its Robotics Group, and colleague Matei Ciocarlie developed a simpler way to control a dexterous robotic hand by drawing on research in biology. They realized that while human hands have about 20 degrees of freedom (20 joints that can each bend), each joint is not capable of moving completely independently; instead, its movements are linked to those of other joints by muscles or nerves.

Traditionally, the software used to control a complex robot hand has tried to account for all the degrees of freedom in the robotic hand's joints, but this is computationally cumbersome and slows the robot down. Instead, Allen and Ciocarlie decided to limit the movement of a robot hand in the same way a human hand is limited. By linking its joints in this way, they showed it is possible to control a complicated robotic hand with faster, more efficient algorithms and without losing any of its functionality. "You can learn from biology to reduce the degrees of freedom," says Allen. "Even though you may have 20 degrees of freedom, you don't need to use them."

The researchers experimented with four different kinds of complex robotic hand, each of which had multiple joints. They developed software to control each gripper by linking its joints. In simulations and real-life tests, the software was able to quickly calculate grasping positions in order to grab different objects, including a wine glass, flask, telephone, model airplane, and ashtray.

0

Cutting-Edge Robots Show Off in Japan :


Today marks the start of the IEEE International Conference on Robotics and Automation(ICRA 2009) in Kobe, Japan, where researchers from around the world will gather to discuss the latest advances in robotics--from cutting-edge climbing machines to robots that politely ask for directions.

Researchers from the University of Pennsylvania will present the latest version of RiSE, a four-legged robot that can both scamper along the ground and rapidly climb a tree or a pole. RiSE V3 was designed and built at Boston Dynamics--the company behind the four-legged military robot BigDog. It has four legs, and tiny claws made from surgical needles that can dig into a vertical surface. The robot's front legs are long enough to hug a telephone pole, and it can climb at 21 centimeters per second.

"RiSE V3 is the first general-purpose legged machine to achieve this vertical climbing speed," says Daniel Koditschek, a professor of electrical and systems engineering at the University of Pennsylvania, who led the work. Because the robot can walk, climb, and rest quietly on a pole while conserving energy, Koditschek says that it could "play an invaluable role in search and rescue, reconnaissance, surveillance, or inspection applications."

Another mobile robot set to debut at the event is Adelopod, developed by researchers at the University of Minnesota. Adelopod, which is about the size of a video controller, doesn't use legs or even wheels to get around. Instead, it flips itself over and over using a pair of 12-centimeter arms . This tumbling mode of locomotion is simple, saves energy, and doesn't require complex hardware, say the researchers involved. "Given its size, it can go places that other robots cannot," says Nikos Papanikolopoulos, director of the university's Center for Distributed Robotics. The group has also developed the larger Loper robot, which can carry several Adelopods and scatter them throughout an area.

Researchers at the Institute of Automatic Control Engineering at the Technical University of Munich (TUM), in Germany, have designed a robot that can find its way around a city without GPS or preloaded maps. It does so by asking pedestrians for directions and using gesture tracking and voice recognition to interpret commands. It also uses human tracking, obstacle detection, and map building to guide itself around a busy city. "The novelty about our research is that we have a robotic system that uses human instructions as global waypoints for navigation in an outdoor environment," says Andrea Bauer, one of the researchers at TUM. "The robot can retrieve missing route knowledge just like a person, by asking passersby."